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Non-localized receptivity of boundary layers 

By J. D. CROUCH? 
Naval Research Laboratory, Washington, DC, USA 

(Received 12 March 1990 and in revised form 7 April 1992) 

A perturbation scheme is developed to analyse the disturbance field produced by 
acoustic forcing over a flat plate with non-localized surface irregularities. Both the 
amplitude of the forcing and the height of the irregularity are assumed to be small. 
At first order, two modes are calculated: a Stokes mode resulting from the acoustic 
forcing, and a wall mode resulting from the surface irregularity. These modes interact 
at second order to produce a forced travelling wave with the frequency of the 
acoustic wave and a wavenumber associated with the surface irregularity. 
Streamwise variations in the mean flow mediate a distributed energy transfer 
between the forced mode and the eigenmode. Sufficiently far downstream, the forced- 
mode amplitude becomes small and the total disturbance is dominated by the 
resulting eigenmode. Receptivity amplitudes, expressed in terms of effective branch 
I values, are O(10) for a broad range of surface wavenumbers. 

1. Introduction 
The process of laminar-turbulent transition in boundary layers has been linked to 

a sequence of instabilities. The streamwise evolution of these instabilities depends on 
their initial amplitudes, which are given as inputs in the stability analysis. To 
determine the initial disturbance amplitudes, boundary-layer receptivity studies 
attempt to describe the mechanisms for the induction of free-stream disturbances 
into the boundary layer. In general, the free-stream disturbances considered are 
classified as either acoustic or vortical (Goldstein & Hultgren 1989 ; Kerschen 1989). 
Acoustic disturbances are long-wavelength pressure perturbations that propagate 
through the fluid, while vortical disturbances are convected by the free stream. 
Receptivity mechanisms provide the necessary conversion of the long-wave free- 
stream disturbances into short-wave disturbances characteristic of the linear 
eigenmodes. 

Early analytical studies of receptivity made use of a forced Orr-Sommerfeld 
equation to describe the induction of free-stream disturbances into the boundary 
layer (Mack 1975; Rogler & Reshotko 1975 ; Tam 1981). These models do not provide 
a means for rescaling the free-stream disturbance wavelength into scales associated 
with Tollmien-Schlichting (TS) waves. The scale-conversion process is activated by 
the interaction of a disturbance with flows generated by geometries containing small 
lengthscales. More recent theoretical studies have used asymptotic methods to 
investigate the receptivity associated with rapid changes in the mean flow. The focus 
has been on localized disturbances from either the leading edge or changes in wall 
geometry, including local roughness (Goldstein 1983 ; 1985). These analyses provide 
the necessary scale conversion and show a significant level of receptivity resulting 
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from the local geometric perturbations. Experimental results of Leehey & Shapiro 
(1980) are in general agreement with Goldstein & Hultgren’s (1987) results for 
receptivity at  the leading-edge juncture. The experiment of Aizin & Polyakov (1979) 
demonstrates that a thin strip of Mylar tape provides the necessary scale conversion 
for capturing acoustic free-stream disturbances. Their receptivity coefficients are in 
good agreement with the theory of Goldstein (1985). 

Other experiments suggest that non-localized irregularities play a role in the 
receptivity process (Corke, Bar Sever & Morkovin 1986; Reshotko 1984). Wall 
roughness, for example, can be a source of short-wave disturbances within the 
boundary layer. When the roughness height is large, the disturbances are so strong 
that they lead to a ‘by-pass’ transition (Reshotko 1984). Small roughness heights, 
however, produce weak stationary disturbances (with zero phase speed). Reshotko 
(1976) suggested that these disturbances may be involved in the early development 
of eigenmodes. In the experiment of Corke et al (1986), distributed roughness had a 
dramatic affect on the early development of TS waves. They attribute this effect in 
part to low-inertia fluid between the surface protuberances; this fluid responds more 
readily than higher-inertia fluid to free-stream disturbances. 

The present paper presents an analysis for acoustic receptivity of boundary layers 
over surfaces with non-localized irregularities. These irregularities may appear as 
non-uniformities in distributed roughness or as mild waviness of an otherwise smooth 
surface. The analysis captures the lengthscale conversion essential to acoustic 
receptivity. A perturbation scheme provides a decoupling of the relevant disturbance 
modes. A t  first order, two modes are calculated: a Stokes mode resulting from the 
acoustic forcing, and a wall mode resulting from the surface irregularity. These 
modes then interact a t  second order to produce a travelling wave with the acoustic 
frequency and a wavenumber associated with the surface perturbation. Streamwise 
variations in the mean flow mediate an energy transfer between the forced mode and 
the eigenmode, resulting in a net receptivity. After presenting the problem 
formulation and perturbation method, we briefly describe the numerical method. 
The results focus on a two-dimensional wavy surface. These results provide the basis 
for a discussion of the receptivity mechanism and its principal effects on the 
disturbance evolution. 

2. Problem formulation 
We consider the acoustic receptivity of a boundary layer over a flat plate with non- 

localized two-dimensional surface irregularities. A schematic of the problem is given 
in figure 1.  The fluid is assumed to  be incompressible, so the acoustic wavenumber 
is zero. Both the acoustic amplitude and the height of the surface perturbation are 
assumed to be small. The base flow is a one-dimensional Blasius profile subject to the 
approximation of quasi-parallel flow. In the experiments of Reshotko & Leventhal 
(1981), no measurable deviation from the Blasius mean-flow profile was observed for 
flows over roughness of small height. 

The quasi-parallel-flow approximation leads to an Orr-Sommerfeld type equation 
governing the disturbances. The weak streamwise variations are accounted for in a 
discrete manner, but the streamwise divergence terms are neglected. Numerical 
simulations for linear stability have demonstrated that Orr-Sommerfeld solutions 
give excellent estimates for disturbance profiles and growth rates (Fasel & 
Konzelmann 1990). The results for the quasi-parallel flow represent the lowest-order 
solutions for the non-parallel boundary layer (Gaster 1974; Saric & Nayfeh 1975). 
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FIGURE 1. Schematic of problem formulation. 

The flow is governed by the Navier-Stokes equations which we write in the form 
of a generalized nonlinear Orr-Sommerfeld equation. Starting with the vorticity 
transport equation, we take a/ax of the spanwise-vorticity equation and subtract 
a/& of the streamwise-vorticity equation to yield 

L[v] +N[u, U] = 0, (1) 

with 
a 

L[o] = -VZ v2w--v2w, 1 at 

a 
ax N[u, U] = - - (v .V)~ ,  

where o = V x u = ( O , O ,  g) and u = (u, w, 0). The coordinates (x, y, z) represent the 
streamwise, surface normal, and spanwise directions, respectively. All quantities are 
non-dimensionalized using the outer velocity, U,, and the fixed reference length 
S,, = S,(P,) = (vP,/U,)+. This results in a fixed Reynolds number R, = U,  S,,/v which 
is related to the streamwise-varying Reynolds number R = U ,  S,/v through the 
relation RIR, = S,/S,,. All calculations are based on the reference Reynolds number 
R, = 1000. 

At  the outer edge of the boundary layer the flow must match the free stream with 
the acoustic perturbation 

u+l+Eexp(-iw,t) as y + m .  (2) 

The boundary condition at the wall is 

u = w = 0 a t  y = SH(x) .  (3) 

The small parameters E and 6 characterize the amplitude of the acoustic forcing 
and the height of the irregularity, respectively. Any surface irregularity can be 
decomposed into a collection of Fourier components. To study the basic mechanisms 
for the non-localized generation of disturbances in the boundary layer, we consider 
a single-mode wavy wall 

(4) H ( x )  = exp (ia, x), 

where a, = 2n/A, and A, is a characteristic wavelength of the surface perturbation. 
In general, a single-frequency boundary-layer disturbance is described by a partial 

differential equation in x and y. We formulate the solution to this partial differential 
equation by decoupling the slow streamwise variation from the variation across the 
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boundary layer. Following the quasi-parallel-flow approximation we locally neglect 
the weak x variation and construct an ordinary differential equation in y. This 
nonlinear equation is reduced to a collection of linear problems using perturbation 
methods. The local x solutions are then used to construct an ordinary differential 
equation in x for the disturbance amplitude variation. 

3. Perturbation analysis 
We seek a solution of (1)-(3) in the form 

u(x, y, t )  = vo(y; x, + 8 v c ( x ,  y, t ,  + S v 8 ( x ,  Y, t ,  +E8vc8(Z7 y, t ) ,  (5 )  

where uo(y ; x) is the local Blasius profile at  the streamwise location x. The second- 
order functions e2 and S2 are not included in ( 5 )  since they do not contribute to the 
receptivity at  this order. Streamwise variations of the boundary layer are accounted 
for by stretching the Blasius profile from uo(yB) into u , ( y ; ~ ) ,  where yB = d/S,. This 
is analogous to the physical problem in which the profile changes, and other 
parameters like the wavenumber 01, remain constant. Using a Taylor expansion 
about o(x,O,t), the boundary condition (3) is moved from y = SH to y = 0. 
Substituting (4) and (5) into (1)-(3) and collecting coefficients of like powers in E and 
S yields 

Order 6 :  

L,[u,l = 0, (6) 

u,+exp (-iwAt) as y+ 00, (7) 

u, = vE = 0 at y = 0,  (8) 

L,[u,l = 0, (9) 

u8+0 as y+m,  (10) 

Order IS: 

au 
exp (ia,x), = 0 at y = 0,  u --0 

8 -  

au, avc 

aY a Y  
u ,g  = --exp(ia,x), vcg = --exp(ia,x) at y = 0. (14) 

For stability analysis, u,(y;x) is considered known. Therefore, we introduce a new 
linear operator L,[v] = L[v] + N[v,, u] +N[u, vO]. The disturbance velocities described 
by (6)-(14) are similar to the velocity components involved in the localized 
receptivity analyses of Goldstein (1985) and Kerschen (1989). 

The problems (6)-(8) and (9)-(11) are linear with a homogeneous boundary 
condition at one boundary and an inhomogeneous condition at the other. We write 
the solution of (6)-(8) as 

U c ( x ,  y, t )  = UA(Y ; x, exp ( -iwA t ) .  (15) 

This velocity component satisfies the free-stream acoustic boundary condition and a 
homogeneous wall boundary condition. Physically, it represents the Stokes flow 
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induced by an acoustic wave of frequency wA and zero grazing angle (Lighthill 1954). 
The v component of uA is zero owing to the assumption of quasi-parallel flow, 
resulting in uA = (uA,O,O). The solution of (9)-(11) is written as 

u,(x, y, t)  = o,(y; 4 exp (ia, 4, (16) 

which satisfies the wall boundary condition and a homogeneous free-stream 
condition. This corresponds to a wavy-wall mode which is a spatially-periodic 
standing wave (Lessen & Gangwani 1976). The two modes u, and u, are distinguished 
from eigensolutions since wA and a, are real and cannot satisfy the characteristic 
equation. 

Substituting the velocities (15) and (16) into (12)-( 14) produces a set of equations 
for the mode generated by the nonlinear operator N. Equation (12) becomes 

This mode represents a travelling-wave disturbance resulting from the interaction of 
the Stokes mode and the wall mode. The corresponding boundary conditions are 

u,8+0 as y+m, (18) 

exp[i(a,x-wAt)], v , ~  = 0 at y = 0. 

Lo, in (17),  is the linear Orr-Sommerfeld operator. The complete spectral 
characteristics of this operator are still not fully understood. However, for the 
current analysis we will focus on a single discrete eigenmode corresponding to the 
most unstable disturbance. We consider forcing parameters (a,, wA) which are close 
to the natural eigenmode parameters (aTS,wTs). The right-hand side of (17) then 
provides a near-resonant forcing. As a result of resonance, energy is ‘leaked ’ into the 
eigenmode leading to non-localized receptivity. 

The solution to (17)-(19) is given by the superposition of a ‘forced mode’ 
(particular solution) u,,, and an eigenmode tl,,TS, 

= ‘e8F+ ‘c8TS’ (20) 

To clarify the relationship between these modes (and the mechanism for receptivity) 
we focus on the streamwise velocity component u,,. The forced mode has the form 

(21) U,,F = /T,(x) aF(y; Z) exp [i+F(Y; 5) + ~+F(x)] exp [ia, x - ~ o A  t]. 

We define the response amplitude xF = maxluFl as a measure of the magnitude of 
the response. The variation of uF across the boundary layer is described by the 
normalized magnitude profile a, and the phase profile 4,. The response phase +, is 
the result of requiring 4, to be zero at the location of the maximum of the a, profile. 
The functions XF, aF, pl,, and +, are all calculated locally but depend weakly on 
x. A TS eigenmode with the same fixed frequency is given by 

u,ms = 4 d z )  ~ T S ( Y  ; x) exp [i+T& ; x) + i+TS(X)] exp i aTSr(8) ds - iwA t , (22) 

where xo is some upstream reference location. The functions JTs, aTs, +TS, and ~ T s  

all depend weakly on x, or R. The imaginary part of aTS is incorporated in the 
amplitude XTs. 

[ SI. 1 
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The streamwise-velocity component of the total travelling-wave disturbance with 

uEd = A(x)exp[i$(x)]U(y;x)exp[i$(y;x)]exp[-iw,t] = U , ~ ~ + U , ~ ~ .  (23) 
The streamwise variation of the total disturbance is described by the amplitude A 
and phase $. The variation across the boundary layer is given by the normalized 
profile u and phase $. For the near-resonant conditions needed for receptivity, the 
forced mode profile has the same shape as the eigenmode except in a thin region near 
the wall (this is demonstrated in $5). The total disturbance, being the sum of uebF and 
u,~,~, also exhibits the eigenmode shape. As a result of these profile similarities, the 
streamwise variation described by (23) can be simplified to an amplitude equation. 
The total travelling-wave disturbance at  frequency wA is then characterized by 

frequency oA is given by the sum of (21) and (22) 

where A ,  = 1, exp (i$,) and A,, = XTsexp (i$TS) are complex amplitudes. The 
eigenmode amplitude A,, can contain variation from both linear growth and the 
forced mode. 

4. Amplitude evolution equation 
Having formulated the local solution for any given x, we now relax the parallel- 

flow assumption in order to  develop a streamwise representation of the disturbance. 
This is the standard quasi-parallel-flow approach which is the lowest-order solution 
for the stability of a weakly non-parallel boundary layer (Gaster 1974; Saric & 
Nayfeh 1975). Taking the derivative with respect to x of (24) yields 

+ r$+ ia, A ,  exp [ia,(x -so)]. 

Variations of the amplitudes occur on a ‘large’ streamwise lengthscale relative to the 
periodic terms which vary on the ‘small’ scale of the instability wavelength. This 
scaling is implicit in any normal-mode type analysis. Balancing the small lengthscale 
terms in (25) gives 

d$ iA-exp[i@] = ia,,,A,,exp +ia,A,exp[ia,(x-xo)]. (26) 
dx 

This equation implies that  the variation of the total phase is dominated by the 
periodic variation of the forced mode and the eigenmode. The large lengthscale 
variations are given by 

dA dA 
-exp[i$] dx = %exp[i[oa,,, dx ( s)ds  ] + ~ e x p [ i a , ( x - x , ) ] .  dx (27) 

We now decompose the eigenmode-amplitude variation into a linear-growth term 
and a term resulting from the energy exchange with the forced mode 
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The function F(x) describes the influence of the forced mode, and is as yet unknown. 
Substituting (28) into (27) gives 

During a passage through near-resonant conditions, the forced-mode amplitude 
varies more rapidly than the normal eigenmode-amplitude variation of qsi A,, (this 
is demonstrated in $5).  This rapid variation of AF in (29) can lead to large values of 
A which would result in a non-uniform velocity expansion. We determine P by 
requiring the expansion for u to be uniform over the range of x being considered. 
From (29), this requirement leads to 

Equation (30) can be considered as a balance of terms which vary on an 
‘intermediate ’ lengthscale (which is large compared to the disturbance wavelength, 
but small compared to the lengthscale of the normal eigenmode-amplitude variation). 
Substituting for F in (28) then provides a differential equation for the eigenmode 
amplitude 

-- dATS - - qSi AT, -% exp [ia,(x - xo) - i qSr(s) ds]. dx U.4, L J XO J 

The forced mode provides energy to the eigenmode in proportion to its rate of 
streamwise variation. This growth modification is scaled by the difference in phase 
between the forced mode with a, and the eigenmode with aTSr. Far from resonance, 
A,(x) varies slowly and contributes only weakly to the eigenmode. Near resonance, 
AF(x) changes more rapidly with x and dominates the eigenmode variation. 

Following the scaling arguments described above, we can construct a finite- 
difference equation equivalent to (31). Using this approach, the energy transfer into 
the eigenmode is seen to result from the continuous projection of the total 
disturbance onto the slowly-varying forced and eigenmode solutions. This method of 
calculating the eigenmode amplitude has also been successfully applied to a much 
simpler model problem. We have considered a forced harmonic oscillator with slowly 
varying natural frequency (analogous to the eigenmode wavenumber). Using a 
theoretical expression (similar to (31)) for the amplitude and phase, the total 
response can be generated. The theory is in complete agreement with direct 
numerical integration of the original differential equation. This model problem and 
the finite difference approach are discussed in the Appendix. 

An initial amplitude is required to determine the eigenmode evolution from (31). 
A t  some distance sufficiently far upstream the eigenmode amplitude will be zero, 
if no other form of receptivity is involved. Solving (31) for ATS, with the initial 
condition A,,(x,) = 0, gives 

Selection of the initial streamwise location xo for evaluating the eigenmode amplitude 
is based on numerical experiments. 

The evaluation of (31) for the conditions of perfect resonance requires some special 
consideration. Under these conditions AF tends to infinity with a phase shift of 7c 
radians at  branch I. As a result, dA,/dx also tends to infinity and is discontinuous 

19-2  
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at branch I. Equation (32) must then be decomposed into an integral to the left of 
branch I and an integral to the right of branch I with an additional contribution from 
the jump discontinuity. When solving (32) numerically, this decomposition occurs 
naturally as a result of the discretization. 

The perturbation analysis, in conjunction with the quasi-parallel-flow approxi- 
mation, reduces the original equations (1)-(3) to sets of linear ordinary differential 
equations. These equations are solved using a spectral collocation method. The 
unbounded domain Y E  [ O , O O )  is transformed into the bounded domain 7 E [l ,  0) using 
the algebraic mapping 7 = vo/(y+vo). The parameter qo controls the distribution of 
points across the boundary layer. Odd Chebyshev polynomials are used as expansion 
functions that automatically satisfy homogeneous boundary conditions at  infinity. 
The presented results are based on 30 collocation points and vo = 4.5, which positions 
half of the collocation points within the displacement thickness of the boundary 
layer. 

5. Travelling wave : forced-mode and eigenmode response 
We now consider the O ( d )  travelling-wave solution given by (21) and (22). This 

solution contains both a forced mode and an eigenmode. For receptivity analysis we 
focus on the most unstable eigenmode. We first consider the forced travelling-wave 
mode which is the particular solution of (17)-(19). The evolution of the natural 
eigenmode is then discussed. 

A forced travelling-wave generated over a wavy surface is described by the 
parameters F = los wA/Rf and a, which remain constant with changing Reynolds 
number R. A TS eigenmode of fixed frequency wA, on the other hand, is characterized 
by a slowly changing (complex) wavenumber aTs determined by the dispersion 
relation. If we track an eigenmode of fixed frequency downstream, the mode may 
coincide with the forced mode (aTSr = a,) at some Reynolds number R*. Figure 2 
shows the wavenumber variation for an eigenmode of fixed frequency F = 56 and a 
forced mode corresponding to R* = 550. 

The condition of a, x aTSr, where ( F ,  aTs) are the local TS parameters, permits the 
forced mode to act as a seeding for the local eigenmode disturbance. The details of 
the seeding mechanism will depend on the particular value of a,. For the special case 
of a, = aTSr at a neutral point (where the imaginary aTSi = 0) ,  a perfect resonance 
occurs between the right-hand-side forcing of (17)  and the homogeneous eigenmode 
solution. Thus when the forced mode parameters are numerically identical to the 
branch I TS parameters the response at  R = R* is singular. 

A more typical response is obtained by considering an R* value away from the 
neutral point. A small variation in m,, away from the special condition a, = aTS at 
branch I, introduces detuning between the forcing and the natural oscillation. This 
eigenvalue detuning (a, =k aTSr at branch I,  and aTSi =I= 0 at R*) removes the singular 
behaviour, analogous to the addition of damping in a linear forced-vibration system. 
For R* away from branch I, the maximum response is reduced and is shifted in 
Reynolds number from branch I toward R*. The maximum response, however, is still 
in the neighbourhood of branch I (where aTSi w 0) and not near R* (where a, x aTSr). 
This results from the detuning of qSr-a, near branch I being smaller than the 
detuning of qsi near R* as shown in figure 2. 

Having the forced response at (F,  a, ; x), we can determine the eigenmode response 
at (F, aTSr; 2) from (32). The combination of these two modes then provides the total 
travelling-wave disturbance. To facilitate comparisons with experiments, we 
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RUURE 3. Streamwise variation of the eigenmode (a )  amplitude and ( b )  phase superposed on 
the forced-mode response at F = 56, a, = 0.174236, R* = 550. 

introduce the Reynolds number R as the independent variable. The streamwise 
location x is related to R through the expression x = Zdrf = R2/Rf. Figure 3 shows the 
variation of the eigenmode amplitude and phase in conjunction with the 
corresponding forced mode for F = 56, a, = 0.174236 (R* = 550). The forced mode 
shows a strong peak near branch I, R w 576. Away from branch I the forced response 
drops off by more than an order of magnitude. The forced-mode phase also undergoes 
dramatic variation in the region of near resonance. Meanwhile, the streamwise 
development of the eigenmode is characterized by three distinct stages. During the 
first stage, contributions from the forced mode are small owing to dA,/dz 4 1. 
Initially the eigenmode amplitude increases rapidly from an initial upstream value 
of zero, but once the eigenmode reaches an amplitude of O( 1 )  at R w 300 it grows a t  
a nearly constant rate. During the second stage of development, the energy transfer 
between the forced mode and the eigenmode increases dramatically. This energy 
transfer is tied to large values of dA,/dx over the region R w 400 to R x 700. The 
rapid changes in A ,  are due to the near resonant response of the forced mode. 
Simultaneously with the strong energy transfer, the eigenmode phase undergoes a 
shift of approximately n radians. During the third stage, contributions from the 
forced mode are again small and the eigenmode evolution is governed by its linear 
growth characteristics. The eigenmode phase ~ T s  then takes on a constant value. 
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A sequence of normalized streamwise-velocity profiles for the conditions of figure 
3 are given in figure 4. In  general, the forced mode profile is very similar to the 
corresponding TS profile. A t  R = 400, the forced mode profile shows a distinct 
deviation from the TS profile near the wall owing to the inhomogeneous boundary 
condition. At R = 550, the maximum of the TS profile is closer to the wall and the 
forced mode response is increased, thus reducing the deviation between the profiles. 
Downstream of branch I at R = 700, the forced profile again shows some deviation 
from the TS profile near the wall. However, the deviation is small because of the shift 
of the TS maximum toward the wall. Near the region of the profile maximum, the 
forced mode profiles are in very close agreement with the eigenmode for each of the 
streamwise locations. Phase profiles for these conditions also show very close 
agreement between the forced mode and the eigenmode, except for a thin region near 
the wall. 

6. Travelling wave: total response 
The principal goal of a receptivity study is usually to provide initial values for 

eigenmode amplitudes in terms of free-stream disturbances and characteristics of the 
surface irregularity. However, for non-localized receptivity the total travelling-wave 
disturbance, including both the forced mode and the eigenmode, must be considered. 
The total disturbance provides the physically relevant solution for the problem. 

The total disturbance amplitude A ,  measurable in an experiment, is obtained from 
(24) using A,, and AF. Figure 5 shows the total disturbance evolution for the 
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FIGURE 5. Streamwise variation of the total amplitude at F = 56, a, = 0.174236, R* = 550. 
The linear growth curve is given for comparison. 

conditions of figure 3. The dashed line represents a linear growth curve obtained by 
matching the total disturbance amplitude at  branch 11. After an initial adjustment 
from A = /r, at R, (the Reynolds number corresponding to x,), the total disturbance 
amplitude grows at  an almost constant rate between R M 300 and R M 450. The 
growth of A then increases over the region of large forced-mode response. This is the 
period of strongest energy transfer between the forced mode and the eigenmode. As 
the forced mode amplitude diminishes, the eigenmode dominates the total 
disturbance. 

An interesting feature of the total amplitude evolution is the large effective growth 
rate. Effective growth rates can be even greater for multiple wavy-wall modes. The 
largest deviation between the effective growth rate and the linear growth rate occurs 
in the neighbourhood (and upstream) of branch I where the forced-mode response is 
maximal. This is in qualitative agreement with experiments of Corke et al. (1986, 
figure 16) and Reshotko (1984, figures 4 ,5 ,  and 12). However, in the experiments of 
Reshotko, transition ultimately occurs as a result of some form of ‘by-pass.’ A 
quantitative comparison to these rough-wall experiments would require detailed 
spectral information about the surfaces and the free stream. 

In order to compare the current results with results for other receptivity 
mechanisms we define an effective branch I amplitude A,. This is obtained by 
projecting the total amplitude at branch I1 back to branch I using the appropriate 
N-factor. The effective branch I amplitude recasts the total distributed receptivity 
into a single-amplitude value at one particular streamwise location (branch I). For 
the conditions of figure 5,  A ,  = 53.7. 

The results of figures 3 and 5 are based on calculating the eigenmode amplitude 
from the initial Reynolds number R, = 250. To justify R, = 250 as sufficiently far 
upstream, we consider the effect of R ,  on the calculation of the effective branch I 
amplitude A,. Figure 6 shows the variation of A ,  with R, for the conditions F = 56, 
R* = 550. For R, values between 450 and 700 the effective receptivity is very 
sensitive to R,. This is the principal region of energy transfer into the eigenmode. If 
R, is upstream of this region, the total energy transfer is captured and the effective 
branch I amplitude is independent of R,. The effective branch I amplitude changes 
less than 0.02% between R, = 250 and R, = 300. For R, values downstream of 
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R x 700, the principal energy transfer is not captured and A ,  tends to zero as R, 
increases. The results of figure 6 suggest that  any R, < 300 is sufficiently far 
upstream. Figure 6 does not represent the receptivity resulting from surface 
variations having a distinct beginning. To calculate the receptivity over such a 
surface the localized end contribution (AT&,) $: 0) must also be considered. This 
end contribution balances the large response for 400 < R, < 700 resulting in a 
monotonic decrease in A ,  as R, increases beyond R x 300. 

Calculations of the effective branch I amplitudes for different values of the 
wavenumber a, are given in figure 7. The largest receptivity occurs for wavenumbers 
corresponding to R* values between branch I (a, x 0.173) and branch I1 (a, x 
0.167). However, the mechanism is operative over a broad band of wavenumbers. 
For wavenumbers below a, x 0.168 the eigenmode is still gaining energy from the 
forced mode a t  branch 11. Non-localized receptivity produces disturbances one-to- 



Non-localized receptivity of boundary layers 579 

two orders of magnitude greater than localized receptivity as expressed in terms of 
branch I amplitudes (Kerschen 1989; Goldstein & Hultgren 1989). Such a strong 
mechanism requires only mild surface waviness to produce significant receptivity. 
Rough surfaces, with variations in the roughness height, will be extremely susceptible 
to this mechanism. 

To assess the effects of the quasi-parallel and lengthscale assumptions, the 
parabolized stability equations (PSE) (Herbert & Bertolotti 1987 ; Bertolotti, 
Herbert & Spalart 1990) are being used to study the receptivity over a wavy wall.? 
The PSE are nonlinear partial differential equations that incorporate the effects of 
streamwise divergence associated with the boundary-layer non-parallelism. The 
equations are solved numerically by a streamwise marching procedure which permits 
the capture of the receptivity directly, without explicitly calculating all of the 
modes considered in the theory. The effective branch I amplitude calculated from the 
PSE, for the conditions of figure 5 ,  is A ,  = 51.7 compared to the theoretical value of 
A ,  = 53.7. This good agreement lends support to the theoretical model and suggests 
that the approximations are well founded and not overly restrictive. 

7. Summary and conclusions 
Using perturbation analysis, we have constructed a non-localized receptivity 

theory which includes a scale-reduction mechanism necessary for acoustic re- 
ceptivity. The Blasius mean flow over a surface with small-amplitude waviness 
produces a wall mode that is periodic in space and fixed in time. Acoustic 
perturbations in the free stream modulate this disturbance field to produce a 
travelling wave which scales linearly with both the acoustic forcing and the height 
of the surface waviness. The travelling wave is composed of an eigenmode and a 
forced mode. Streamwise variations in the mean flow activate a distributed energy 
transfer between these modes. This energy transfer is maximized in the neigh- 
bourhood of branch I where the forced response is most significant. Downstream of 
the strong energy transfer the forced-mode amplitude is small, leaving the eigenmode 
as the dominant component of the total disturbance. Projecting the disturbance 
amplitude back to branch I provides an effective receptivity amplitude. The branch 
I receptivity amplitudes A ,  are O( 10) over a broad range of surface wavenumbers. 
When operative, this will be a dominant mechanism for boundary-layer receptivity. 
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Appendix 
We consider a forced harmonic oscillator as a model problem to help demonstrate 

the approach for calculating the eigenmode amplitude. The equation governing a 
forced oscillator, with varying natural frequency is 

(A 1) d2u/dZ + 02( Z) u = cos 522 

t Work done in conjunction with F. P. Bertolotti. 
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FIGURE 8. Variation of the total solution u, and the forced and eigenmode amplitudes for the 
model problem. Resonance occurs at  x/2n = 10. 

where w varies slowly with x. The ‘local’ solution of (A 1 )  for fixed w is given by 

u(x) =Acos(~X+p)+AcosQx,  (A 2) 

where A = 1/(w2--Q2), with A and /3 determined by initial conditions. To formulate 
an expression for the variation of A ,  we follow a finite-difference approach (rather 
than the differential approach used in $4). This provides some additional insights 
into the mechanism of energy transfer into the eigenmode. Assuming the complete 
solution is known a t  x,, we can calculate an approximate solution at  x, = x, +Ax by 
allowing only the ‘fast ’ periodic terms to vary. A local calculation a t  x, then provides 
a general solution in the form of (A 2). The eigenmode amplitude and phase at x, are 
determined by using the approximate solution as an initial value. This yields the 
desired expressions for the amplitude and phase 

A ;  = [ A ,  cos (wl XZ+P1)  - (A2-A1) COSQX,]~ 

- w2 x2, (A 4) w2(A,  cos (w,  x2 +pl, - ( A ,  - A J  COSQX,) 1 w,  A ,  sin (wl x, + P,) - (A ,  - A , )  Q sin Qx, p2 = tan-, 

where the subscripts 1 and 2 signify the values a t  x, and x,, respectively. Given the 
initial conditions at some location xo, the eigenmode response is calculated using 
(A 3) and (A 4). Substituting for the eigenmode amplitude and phase in (A 2) then 
yields the total solution. Variation in x leads to a change in w and A which in turn 
require a continuous adjustment of the eigenmode response. 

As an  example, we consider the case w = 0.5+0.05(x/2~),Q = 1. The initial 
conditions are u(0) = A(O), u’(0) = 0, which is equivalent to setting A(0)  = 0. Figure 
8 shows the results from both the analysis and a direct numerical integration of 
(A 1 ) .  The analytical value for u is indistinguishable from the numerical result. The 
forced mode and the eigenmode amplitudes are also shown. As o passes through 
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resonance (w = Q at x / 2 ~  = lo), the forced-mode amplitude tends to infinity. The 
eigenmode amplitude follows the forced mode through resonance, but the two modes 
are approximately 180' out of phase. Meanwhile, the total amplitude grows at a rate 
proportional to x, as expected for resonance. Prior to resonance (say, x / 2 x  < 5 ) ,  
A x 0 and u varies with the forced frequency Q. After resonance, A tends to zero 
and A tends to a constant value. The total solution then varies with the natural 
frequency w .  During resonance the solution is non-stationary, being characterized by 
a combination of the forced and eigenmode responses. 
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